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The structure function S(k; ;) for the one-dimensional one-component log�gas
is the Fourier transform of the charge�charge, or equivalently the density�
density, correlation function. We show that for |k|<min(2?\, 2?\;), S(k; ;) is
simply related to an analytic function f (k; ;) and this function satisfies the func-
tional equation f (k; ;)= f (&2k�;; 4�;). It is conjectured that the coefficient of
k j in the power series expansion of f (k; ;) about k=0 is of the form of a poly-
nomial in ;�2 of degree j divided by (;�2) j. The bulk of the paper is concerned
with calculating these polynomials explicitly up to and including those of degree
9. It is remarked that the small k expansion of S(k; ;) for the two-dimensional
one-component plasma shares some properties in common with those of the
one-dimensional one-component log�gas, but these break down at order k8.

KEY WORDS: Logarithmic potential; two-dimensional plasma; fractional
statistics; random matrices; exact solution.

1. INTRODUCTION

The one-component log�gas, consisting of N unit charges on a circle of
circumference length L interacting via the two-dimensional Coulomb
potential 8(r� , r� $)=&log |r� &r� $| , is specified by the Boltzmann factor

AN, ; `
1� j<k�N

|e2?ixk �L&e2?ixj�L| ;, 0�x j�L (1.1)
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The constant AN, ; , which plays no role in the calculation of distribution
functions, results from scaling the radius of the circle out of the logarithmic
potential, and also includes the particle-background and background-back-
ground interactions (a uniform neutralizing background is imposed for
thermodynamic stability). The thermodynamic limit N, L � �, N�L=\
(fixed) is taken, which gives an infinite system on a straight line with par-
ticle density \. This system was first studied because of its relation to the
theory of random matrices.(20) The thermodynamic functions were obtained.
The pressure P has the simple form

;P=[1&(;�2)] \ (1.2)

at any inverse temperature ;. However, exact (simple) forms for the
correlation functions were obtained by the pioneers only for the special
temperatures corresponding to ;=1, 2, 4 (See Section 5). More recently,
exact expressions for the two-body density were derived for arbitrary even
integer ;(3) and then for arbitrary rational ;.(11) Unfortunately, these latter
exact expressions are complicated multivariable integral representations
which cannot be easily used as such for actual computations. The purpose
of the present paper is to obtain explicit small k expansions for the struc-
ture function (the Fourier transform of the two-body density).

The log�gas is an example of a system interacting via the d-dimen-
sional Coulomb system (here d=2) but confined to a domain of dimension
d&1. It therefore exhibits universal features��that is features independent
of microscopic details such as any short range potential between charges or
the number of charge species��characteristic of Coulomb systems in this
setting.(14) One universal feature is the existence of an algebraic tail in the
leading non-oscillatory term of the large-distance asymptotic expansion of
the charge�charge correlation function. For general charged systems in
their conductive phase, interacting via the two-dimensional Coulomb
potential in a one-dimensional domain, this is predicted to have the form(7)

&
1

;(?r)2 (1.3)

where r is the distance. For the one-component log�gas, (1.3) can be
verified for all ; rational.(8)

The verification is possible because the charge�charge correlation func-
tion (which for a onecomponent system is the same as the density�density
correlation) is known explicitly for ; rational(11) (see (2.3) below). In this
work we further analyze the properties of the structure factor S(k; ;)
(Fourier transform of the charge�charge correlation) for the one-component
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log�gas. In particular we are interested in the ; dependence of the coef-
ficients in the small k expansion of S(k; ;).

The large distance behaviour (1.3) is equivalent to the small k
behaviour

S(k; ;)t
|k|
?;

(1.4)

Furthermore, by making use of the equivalence of the charge�charge and
density�density correlation in the one-component log�gas, together with
the exact equation of state the second order term in (1.4) has been predicted
for general ;, (6) giving

S(k; ;)t
|k|
?;

+
(;�2&1) k2

(?;)2 \
+O( |k|3) (1.5)

Let

f (k; ;) :=
?;
|k|

S(k; ;), 0<k<min(2?\, ?;\) (1.6)

and define f for k<0 by analytic continuation (we will see below that
f (k; ;) is analytic for 0�|k|<min(2?\, ?;\)). In Section 2 we use the
exact result (2.3) below to derive the functional equation

f (k; ;)= f \&
2k
;

;
4
;+ (1.7)

The simplest structure consistent with (1.7) is

?;
|k|

S(k; ;)=1+ :
�

j=1

pj (;�2) \ |k|
?;\+

j

, |k|<min(2?\, ?;\) (1.8)

where pj (x) is a polynomial of degree j which satisfies the functional relation

pj (1�x)=(&1) j x& jpj (x) (1.9)

Equivalently, (1.9) can be stated as requiring

pj (x)= :
j

l=0

aj, lx l, aj, l=aj, j&l ( j even) (1.10)

pj (x)=(x&1) :
j&1

l=0

a~ j, lxl, a~ j, l=a~ j, j&1&l ( j odd) (1.11)
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Inspection of (1.5) shows that the conjectured structure (1.8) is correct
at order |k| and furthermore gives

p1(x)=(x&1) (1.12)

and thus a~ 1, 0=1 in (1.11). In Section 3 we use (2.3) to verify that the struc-
ture (1.8) is correct at order k2 and we compute p2(x) explicitly. In Section 4
we use an exact evaluation of the two-particle distribution function for ;
even(3) to rederive the result of Section 3, and we also use this formula to
verify the structure (1.8) at order k4 and to compute p4(x) explicitly.

Assuming the validity of (1.8) we see that pj (x) can be computed from
knowledge of the coefficient of |k| j in S(k; ;), or the coefficient of |k| j in
�pS(k; ;)��; p ( p� j), for an appropriate number of distinct values of ;.
Because the functional relation (1.7) has via (1.10) and (1.11) been made
a feature of (1.8) the values of 3 cannot be related by ; [ 4�;. In Section 5
the known exact evaluation of S(k; ;) to leading order in ; is reviewed,
as are the exact evaluations of S(k; 2) and S(k; 4). Also noted are the exact
evaluations of S(k, 1) and S(k; ;) to leading order in 1�;, which according
to (1.7) are related to S(k; 4) and S(k; ;) to leading order in ; respectively.
All of these exact evaluations are in terms of elementary functions, and so
can be expanded to all orders in k. We then present the exact evaluation
of �S(k; ;)��; to leading order in ;, as well as the exact evaluation of
�S(k; ;)��; evaluated at ;=2 and ;=4. The details of the latter two
calculations are given in separate appendices. Again the final expressions
can be expanded to high order in |k|. Using this data all polynomials in the
expansion (1.8) up to and including the term with j=9 can be computed.
This expansion is written out explicitly in the final section and some special
features of the polynomials therein, relating to the sign of the coefficients
and the zeros, are noted. A physical interpretation of the functional equation,
based on an analogy with a quantum many body system, which identifies an
equivalence between quasi-hole and quasi-particle states contributing to
S(k; ;) for |k| small enough is given. We end with some remarks on the
possible occurence of a functional equation analogous to (1.7) in the two-
dimensional one-component plasma.

2. THE FUNCTIONAL EQUATION

The Boltzmann factor (1.1) also has the physical interpretation as the
absolute value squared of the exact ground state wave function, |0) say,
for the Calogero�Sutherland quantum many body Hamiltonian

H=& :
N

j=1

�2

�x2
j

+;(;�2&1) \?
L+

2

:
1� j<k�N

1
sin2 ?(xj&xk)�L

(2.1)

740 Forrester, Jancovici, and McAnally



This Hamiltonian describes quantum particles on a circle of circumference
length L interacting via the inverse square of the distance between the par-
ticles. In the thermodynamic limit N, L � �, N�L=\ (fixed) the N particle
system becomes an infinite system on a line with particle density \. The
ground state dynamical density�density correlation function

\dyn.(0, x; t) :=(0| n(0) e&iHtn(x) eiHt |0) , n( y) := :
N

j=1

$( y&xj ) (2.2)

in the infinite system has been calculated exactly for all rational ;.(11) The
fact that ( |0) )2 is proportional to (1.1) tells us that at t=0 (2.2) is equal to

\T
(2)(0, x)+\$(x)

where \T
(2) is the truncated two-body density, for the log�gas system. Thus

the exact evaluation of

S(k; ;) :=|
�

&�
(\T

(2)(0, x)+\$(x)) eikx dx

for the log�gas follows from the exact evaluation of (2.2) for the quantum
system. Taking ; to be rational and setting

;�2 :=p�q =: *

where p and q are relatively prime integers, the latter exact result gives(6)

S(k; ;)=?Cp, q(*) `
q

i=1
|

�

0
dxi `

p

j=1
|

1

0
dyj Q2

p, qF(q, p, * | [xi , yj ]) $(k&Qp, q)

(2.3)

where

Cp, q(*) :=
*2p(q&1)1 2( p)

2?2p! q!
1 q(*) 1 p(1�*)

\>q
i=1 1 2( p&*(i&1))
_> p

j=11 2(1&( j&1)�*)+
Qp, q :=2?\ \ :

q

i=1

xi+ :
p

j=1

y j+ (2.4)

F(q, p, * | [xi , yj ]) :=
>i<i $ |xi&xi $ |

2* >j< j $ | yj& yj $ |
2�*

>q
i=1 > p

j=1 (x i+*yj )
2

_
1

>q
i=1 (x i (xi+*))1&* > p

j=1 (*yj (1& yj ))1&1�*
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In the domain of integration of (2.3) the integration variables are all
positive and because of the delta function are restricted to the hyperplane

:
q

i=1

xi+ :
p

j=1

yj=
|k|

2?\

We see immediately from these constraints that the restriction yj<1 in the
domain of integration is redundant for

|k|<2?\ (2.5)

Thus assuming (2.5) we can extend the integration over yj to the region
(0, �). Doing this and changing variables xi [ |k| xi and yj [ |k| yj we
see that for |k| in the region (2.5)

S(k; ;)=? |k| Cp, q(*) `
q

i=1
|

�

0
dxi `

p

j=1
|

�

0
dyj Q2

p, q

_F� (q, p, * | [xi , yj ]; k) $(1&Qp, q) (2.6)

where

F� (q, p, * | [xi , yj ]; k)=
1

>q
i=1 (x i (1+kxi �*))1&* > p

j=1 ( yj (1&ky j ))1&1�*

_
>i<i $ |xi&xi $ |

2* >j< j $ | yj& yj $ |
2�*

>q
i=1 > p

j=1 (x i+*yj )
2 (2.7)

Notice that (2.7) is such that the integral in (2.6) is analytic for

|k|<min(2?\, ?\;) (2.8)

Thus according to the definition (1.6) we read off that

f (k; ;)=2?2*Cp, q(*) `
q

i=1
|

�

0
dxi `

p

j=1
|

�

0
dyj Q2

p, q

_F� (q, p, * | [xi , yj ]; k) $(1&Qp, q) (2.9)

The functional equation (1.7) is a simple consequence of this exact for-
mula. Thus we see that the integral in (2.9) is unchanged by the mapping
* [ 1�* (and thus p W q) followed by k [ &k�*. The precise functional
equation (1.7) follows provided we can show that

Cp, q(*)=*2pq&2Cq, p(1�*)

which indeed readily follows from the definition of Cp, q(*) in (2.4).
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3. EXPANDING f(k; ;) IN TERMS OF DOTSENKO�FATEEV
TYPE INTEGRALS

Here we will develop a strategy based on the integral formula (2.9) to
expand f (k, ;) at order k2. This relies on our ability to compute certain
generalizations of a limiting case of the Dotsenko�Fateev integral. This
same method has been used in refs. 8, 6 to compute the equivalent of
f (k, ;) and its derivative at k=0.

We first expand the integrand in (2.9) as a function of k. According to
(2.7) we have

F� (q, p, * | [xi , yj ]; k)

=G(q, p, * | [xi , yj ]) \1+ :
�

&=1

H&(q, p, * | [x i , y j ]) k&+
where

G(q, p, * | [xi , yj ])

=
>i<i $ |xi&x i $ |

2* > j< j $ | yj& yj $ |
2�*

>q
i=1 > p

j=1 (xi+*y j )
2 >q

i=1 x1&*
i > p

j=1 y1&1�*
j

(3.1)

1+ :
�

&=1

H&(q, p, * | [x i , yj ]) k&

=
1

>q
i=1 (1+kxi �*)1&* > p

j=1 (1&kyj )
1&1�*

The coefficients H& are homogeneous polynomials in [x i , y j ] of degree &.
Let us now introduce the notation

Ip, q, *[h([x i , yj ])] := `
q

i=1
|

�

0
dxi `

p

j=1
|

�

0
dyj Q2

p, qG(q, p, * | [xi , y j ])

_$(1&Qp, q) h([xi , yj ]) (3.2)

Because of the presence of the delta function the value of Ip, q, * is
unchanged if Q2

p, q is replaced by Qn
p, q for any n. Doing this and also intro-

ducing the usual integral representation of the delta function, we see by a
change of variables as detailed in ref. 6 that for h homogeneous of degree &

Ip, q, *[h([x i , yj ])]=
Jp, q, *, n[h([x i , y j ])]

(&+n&1)!
=

Jp, q, *[h([xi , y j ])]
(&&1)!

(3.3)
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where

Jp, q, *, n[h([xi , yj ])]

:= `
q

i=1
|

�

0
dxi `

p

j=1
|

�

0
dyj Qn

p, qG(q, p, * | [xi , yj ]) e&Qp, q h([xi , yj ])

and Jp, q, * :=Jp, q, *, 0 .
Recalling (2.9) and (3.1) we see that in terms of the notation (3.2)

f (k; ;)=Cp, q(*) \Ip, q, *[1]+ :
�

&=1

Ip, q, *[H&(q, p, * | [x i , y j ])] k&+ (3.4)

The definition of H& in (3.1) shows

H2(q, p, * | [xi , yj ])=
(*&1)2

2*2

Q2
p, q

(2?\)2&
*&1
2*2 \ :

q

i=1

x2
i &* :

p

j=1

y2
j + (3.5)

so to compute f (k, ;) at order k2 our task is to evaluate

Ip, q, *[Q2
p, q] and Ip, q, * _ :

q

i=1

x2
i &* :

p

j=1

y2
j & (3.6)

Now because of the delta function in (3.2)

Ip, q, *[Q2
p, q]=Ip, q, *[1] (3.7)

and we know from ref. 6 that

Cp, q(*) Ip, q, *[1]=1 (3.8)

Thus our remaining task is to compute the second expression in (3.6) or
equivalently, using (3.3), to compute

Jp, q, * _ :
q

i=1

x2
i &* :

p

j=1

y2
j &=qJp, q, *[x2

i ]&*pJp, q, *[ y2
j ] (3.9)

where the second equality, valid for any 1�i�q and 1� j�p, follows
from the symmetry of the integrand.
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For this purpose we first note formulas for Jp, q, *[h] in the cases
h=x2

i and h= y2
j . The formulas are

Jp, q, *[x2
i ]=

(2p&*+1)
2?\

Jp, q, *[x i]&
p

?\
Jp, q, * _ x2

i

xi+*yj& (3.10)

Jp, q, *[ y2
j ]=

(2q&1�*+1)
2?\

Jp, q, *[ y j]&
*q
?\

Jp, q, * _
x2

j

xi+*yj& (3.11)

The derivation of (3.10) and (3.11) uses a technique based on the
fundamental theorem of calculus. It was first used by Aomoto(1) in the con-
text of the Selberg integral, and has been adapted in ref. 8 to the case of the
Dotsenko�Fateev integral.

Let us give the details of the derivation of (3.10) (the derivation of
(3.11) is similar). From the definition (3.1) we see that

�
�xi

G(q, p, * | [xi , yj ])

=\*&1
x i

&2 :
p

j=1

1
xi+*yj

+2* :
q

i $=1; i ${i

1
xi&xi $+ G(q, p, * | [x i , yj ])

Thus

0= `
q

i=1
|

�

0
dx i `

p

j=1
|

�

0
dyj

�
�xi

(x2
i G(q, p, * | [x i , y j ]) e&Qp, q)

=(*+1) Jp, q, *[xi]&2 :
p

j=1

Jp, q, * _ x2
i

x i+*yj&
+2* :

q

i $=1; i ${i

Jp, q, * _ x2
i

xi&x i $ &&2?\Jp, q, *[x2
i ]

=(*+1) Jp, q, *[xi]&2pJp, q, * _ x2
i

xi+*yj&
+2*(q&1) Jp, q, * _ x2

i

xi&xi $&&2?\Jp, q, *[x2
i ] (3.12)

where the first equality follows from the fundamental theorem of calculus,
while the final equality, valid for any j=1,..., p and any i $=1,..., q, (i ${i)
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follows by the symmetry of the integrand with respect to [xi ] and [ yj ].
The symmetry of the integrand with respect to [xi ] also gives

Jp, q, * _ x2
i

xi&xi $&=Jp, q, * _ x2
i $

xi $&xi&
so we have

Jp, q, * _ x2
i

x i&xi $&=
1
2 \Jp, q, * _ x2

i

xi&x i $&+Jp, q, * _ x2
i $

xi $&x i&+=Jp, q, *[xi]

Substituting in (3.12) implies (3.10).
From (3.10) and (3.11) we see that

qJp, q, *[x2
i ]&*pJp, q, *[ y2

j ]

=
q(2p&*+1)

2?\
Jp, q, *[xi]&

*p(2q&1�*+1)
2?\

Jp, q, *[ y j]

&
pq
?\

Jp, q, * _
x2

i &*2y2
j

xi+*yj &
=

q(&*+1)
2?\

Jp, q, *[xi]&
*p(&1�*+1)

2?\
Jp, q, *[ y j]

=&
*&1

(2?\)2 Jp, q, *[Qp, q]=&
*&1

(2?\)2 Jp, q, *[1] (3.13)

Recalling (3.5), the results (3.3), (3.7), (3.9) and (3.13) give that

Ip, q, *[H2(q, p, * | [xi ], [ yj ]]=
1

(2?\)2

(*&1)2

*2 Jp, q, *[1]

Use of (3.8) then gives that the term proportional to k2 in (3.4) is equal to

(*&1)2 \ k
2?*\+

2

=(;�2&1)2 \ k
?;\+

2

(3.14)

It follows from this that the structure (1.8) is valid at order k2 with

p2(x)=(x&1)2 (3.15)
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4. LARGE-x EXPANSION OF \T
(2)(0, x)

We have already remarked that the large-x expansion (1.3) of the
charge�charge correlation, or what is the same thing for the one-compo-
nent log�gas, the large-x expansion of \T

(2)(0, x), is equivalent to the small-
k behaviour (1.4) of S(k; ;). More generally, as shown below, the non-
oscillating part of this expansion is of the form

\T
(2)(0, x)non-osc t

x � �
:
�

n=1

cn

x2n (4.1)

(with only even inverse powers of x), equivalent to the expansion

Sodd(k; ;) t
k � 0

? :
�

n=1

(&1)n cn

(2n&1)!
|k|2n&1 (4.2)

where Sodd is that part of the expansion of S(k, ;) containing the terms
singular in k (i.e., of odd order in |k| ). This follows using the Fourier trans-
form

|
�

&�

eikx

x2n dx=?
(&1)n |k|2n&1

(2n&1)!

from the theory of generalized functions (see e.g., ref. 8).
From the equivalence between (4.1) and (4.2) we see the fact, follow-

ing from (3.14), that the term proportional to |k|3 in the small k expansion
of S(k; ;) is equal to

\(;�2&1)2 \ |k|
?;\+

3

is equivalent to the statement that the term proportional to 1�x4 in the
non-oscillating part of the large x expansion of \T

(2)(0, x) is equal to

\26;(;�2&1)2 \ 1
?;\x+

4

(4.3)

In this section we will derive (4.3) directly. We will also calculate the
O(1�x6) term and so explicitly determine the O( |k|5) term in (4.2).

The starting point for our calculation is an exact ;-dimensional
integral formula for the two-particle distribution \(2)(0, x) valid for ; even.
With

Sn(a, b, c) := `
n&1

j=0

1 (a+1+ jc) 1 (b+1+ jc) 1 (1+( j+1) c)
1 (a+b+2+(N+ j&1) c) 1 (1+c)
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the formula gives that in the thermodynamic limit(3)

\(2)(0, x)=\2(;�2) ; ((;�2)!)3

;! (3;�2)!
e&?i;\x(2?\x) ;

S;(1&2�;, 1&2�;, 2�;) |[0, 1]
du1 } } } du;

_ `
;

j=1

e2?i\xuj u&1+2�;
j (1&u j )

&1+2�; `
j<k

|uk&uj |
4�; (4.4)

In a previous analysis(3) it has been shown that the non-oscillatory
large-x behaviour is determined by the integrand in the vicinity of the
endpoints 0 and 1, with the requirement that ;�2 of the integration
variables are in the vicinity of the endpoint 0, while the remaining ;�2
integration variables are in the vicinity of the endpoint 1. Thus we write
u;�2+ j=1&vj ( j=1,..., ;�2) (this introduces a combinatorial factor ;
choose ;�2 to account for the different ways of so partitioning the integra-
tion variables) and then expand the integrand (excluding the exponential
factors which involve x) in terms of the ``small'' variables uj , vj ( j=1,..., ;�2).
In particular we must expand

`
;�2

j=1

(1&uj )
&1+2�; (1&vj )

&1+2�; `
;�2

l, l $=1

(1&ul&vl $)
4�; (4.5)

The function (4.5) is a symmetric function of the variables [uj ] and [vj ]
separately. Let [q}]} be a polynomial basis for symmetric functions with
} denoting a partition (ordered set of nonnegative integers) of no more
than ;�2 parts, and suppose furthermore that q} is homogeneous of order
|}| :=}1+ } } } +};�2 . Then we can write

`
;�2

j=1

(1&uj )
&1+2�;(1&vj )

&1+2�; `
;�2

l, l $=1

(1&ul&vl $)
4�;

= :
}, +

w}, +q}(u1 ,..., u;�2) q+(v1 ,..., v;�2) (4.6)

Substituting (4.6) in (4.4), then following the procedure of ref. 3, which
involves extending the range of integration to uj # (0, �), vj # (0, �) and
changing variables uj [ 2?i\xuj , vj [ &2?i\xvj making use in the process
of the fact that q} is homogeneous of degree |}|, we obtain the non-oscil-
latory terms in the large-x asymptotic expansion of \(2)(0, x). This reads

\(2)(0, x)t\2 \ ;
;�2+ (;�2) ; ((;�2)!)3

;! (3;�2)!
1

S;(1&2�;, 1&2�;, 2�;)

_ :
}, +

w}, +
K;, }K;, +

i |*|&|+|(2?\x) |}|+|+| (4.7)
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where

K;, } :=|
[0, �) ;�2

du1 } } } du;�2 `
;�2

l=1

u&1+2�;
l e&ul `

j<k

|uk&uj |
4�; q}(u1 ,..., u;�2)

(4.8)

The symmetry w}, +=w+, } evident from (4.6) implies terms in (4.7) with
|}|+|+| odd cancel. Therefore the sum in (4.7) can be restricted to parti-
tions such that |}|+ |+| is even, which means the asymptotic expansion
only contains inverse even powers of x.

To proceed further we must be able to compute the expansion coef-
ficients w}, + as well as the integrals K;, } . For the former task it is con-
venient to choose q} equal to the monomial symmetric polynomial m} ,
which is defined as the symmetrization of the monomial x}1

1 } } } x};�2
;�2 nor-

malized so that the coefficient of x}1
1 } } } x};�2

;�2 is unity.
First, we have the well known expansion

`
n

j=1

(1&uj )
a= :

l(})�n

a}m}(u1 ,..., un) (4.9)

where

a}= `
l(})

p=1

a}p
, ak :=

(&a)k

k!
(4.10)

with l(}) denoting the length of } (i.e., number of non-zero parts). We can
therefore immediately expand the first product in (4.6) in terms of
monomial symmetric polynomials.

Consider next the expansion of the double product in (4.6). Making
use of the formulas

(1&x)a= :
�

n=0

(&a)n

n!
xn (4.11)

`
n

j=1
\ :

�

k=0

ak tk
j += :

l(})�n

aN&l(})
0 a}m}([tj ]) (4.12)

where a} is specified by the first equality in (4.10), we see that

`
;�2

j=1

(1&uj&v)4�;= :
l(})�;�2

(1&v)2&|}| c}m}(u1 ,..., u;�2) (4.13)
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where

c}= `
l(})

p=1

c}p
, ck :=

(&4�;)k

k!

Expanding the factor (1&v)2&|}| we can rewrite (4.13) as

`
;�2

j=1

(1&uj&v)4�;= :
�

n=0

wn(u1 ,..., u;�2 ; ;) vn

for appropriate symmetric functions wn . Replacing v by vj $ and forming the
product over j $ using (4.12) we obtain

`
;�2

j, j $=1

(1&uj&vj $)
4�;= :

l(})�;�2

w;�2&l(})
0 w}m}(v1 ,..., v;�2)

where w} :=>l(})
p=1 w}p

. The final step is to expand w;�2&l(})
0 w} , in terms of

[m+] and so obtain the expansion

`
;�2

j, j $=1

(1&uj&vj $)
4�;= :

+, }

t+, }m+(u1 ,..., u;�2) m}(v1 ,..., v;�2) (4.14)

The practical implementation of this procedure requires the use of com-
puter algebra. We work with arbitrary (positive integer) values of ;�2.
Furthermore, we only include terms with |+|+|}|�6 throughout since
according to (4.7) these terms suffice for the evaluation of the coefficients
of 1�x2n, n�3.

Having obtained the coefficients t+, } , in (4.14), we multiply the series
(4.14) with the two series of the form (4.9) representing the first two
products in (4.5), expressing the answer in the form of (4.6), and so deter-
mining the coefficients w}, + . Again this step requires computer algebra.

With w}, + in (4.6) determined, it remains to compute the multiple
integral (4.8) with q+=m+ . For this task we introduce a further basis of
symmetric functions, namely the Jack polynomials [P (;�2)

} (u1 ,..., u;�2)]. The
Jack polynomials P (2�;)

} (z1 ,..., zN) with zj :=e2?ixj �L, when multiplied by the
ground state wave function |0) , are the eigenfunctions of the Calogero�
Sutherland Schro� dinger operator (2.1).(5) Each polynomial is homogeneous
of degree |}| and has the expansion

P(:)
} (z1 ,..., zN)=m}+ :

+<}

a}+ m+ (4.15)
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where < is the dominance partial ordering for partitions: +<} if |}|= |+|
with }{+ and � p

i=1 +i�� p
i=1 }i for each p=1,..., N. The coefficients a}+

can be calculated by recurrence.(19)

The significance of the Jack polynomial basis is that we have the
explicit integral evaluation

1
Wa:N

`
N

l=1
|

�

0
dtl ta

l e&tlP (:)
} (t1 ,..., tN) `

j<k

|tk&tj |
2�:

=P (:)
} (1N)[a+(N&1)�:+1] (:)

} (4.16)

which is a limiting case of an integration formula due to Macdonald, (19)

Kadell, (15) and Kaneko.(17) In (4.16)

Wa:N= `
N

l=1
|

�

0
dt l ta

l e&tl `
j<k

|tk&tj |
2�:

= `
N&1

j=0

1 (1+( j+1)�:) 1 (a+1+ j�:)
1 (1+1�:)

[u] (:)
} := `

N

j=1

1 (u&( j&1)�:+}j )
1 (u&( j&1)�:)

and P (:)
} (1N) denotes P (:)

} (x1 ,..., xN) evaluated at x1= } } } =xN=1.
To make use of (4.16) we must first express the monomial symmetric

polynomials m} in terms of [P (2�;)
+ ]+�} , which can be done using computer

algebra from knowledge of the expansion (4.15). Substituting in (4.16)
allows the integrals K}; to be computed.

After completing this procedure all terms in (4.7) for |}|+|+|�6 are
known explicitly. Performing the sum and simplifying we obtain

\(2)(0, x)t\2 \1&
1

;(?\x)2+
3(;&2)2

2;3(?\x)4&
15(;&2)2 (;2&3;+4)

2;5(?\x)6 + } } } +
(4.17)

Note that this agrees with the known form (1.3) for the term O(1�x2), and
the form (4.3) for the term O(1�x4). The term O(1�x6), due to the equiv-
alence between (4.1) and (4.2), implies the term O( |k|5) in the small-k
expansion of S(k, ;) is equal to

(;�2&1)2 \(;�2)2&
3
2

(;�2)+1+\ |k|
?;+

5

(4.18)
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This is of the form of the conjecture (1.8) with

p4(x)=(x&1)2 (x2& 3
2 x+1) (4.19)

5. S(k; ;) FOR SPECIAL ;

Let us assume the validity of (1.8). The coefficients specifying the poly-
nomials pj (x) therein can be determined from knowledge of the coefficient
of |k| j+1 in S(k; ;) or � pS(k; ;)��; p ( p� j) at special values of ;. Now in
the context of random matrix theory S(k; ;) has been evaluated in terms
of elementary functions for ;=1, 2 and 4. The results are(20)

S(k; 1)={
|k|
?

&
|k|
2?

log \1+
|k|
?\+ ,

2\&
|k|
2?

log \ 1+|k|�?\
&1+|k|�?\+

|k|�2?\

|k|�2?\
(5.1)

S(k; 2)={
|k|
2?
\

|k|�2?\

|k|�2?\
(5.2)

S(k; 4)={
|k|
4?

&
|k|
8?

log }1&
|k|

2?\}
\

|k|�4?\

|k|�4?\
(5.3)

Recalling the definition (1.6) of f (k, ;) we read off

f (k; 1)=1&
1
2

log \1+
k

?\+ (5.4)

f (k; 2)=1 (5.5)

f (k; 4)=1&
1
2

log \1&
k

2?\+ (5.6)

The exact evaluation (5.5) implies that for all j pj (x) contains a factor
of (x&1). In the case of j odd this gives no new information since the
factor (x&1) was already deduced as a consequence of the functional
equation (1.9). On the other hand, in the case j even this fact together with
the functional equation (1.9) implies

pj (x)=(x&1)2 :
j&2

l=0

bj, lx l, b j, l=bj, j&2&l ( j even) (5.7)
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Consider now the constraints on the coefficients in (5.7) and (1.11)
which follow from (5.4) and (5.6). As (5.4) and (5.6) are related by the
functional equation (1.7), and this is built into the structures (5.7) and
(1.11), only one of these exact evaluations gives distinct information on
pj (x). For definiteness consider (5.4). We see that

[k j] f (k; 1)=
1
2

(&1) j

j(?\) j , j�1 (5.8)

where the notation [k j] denotes the coefficient of k j. Recalling (1.8), (5.7)
and (1.11) this implies, for j even,

1
j
=

1
2

((1+2&( j&2)) b j, 0+(2&1+2&( j&3)) bj, 1+ } } }

+(2& j�2+2+2& j�2) bj, j�2&2+2& j�2+1bj, j�2&1) (5.9)

while for j odd

1
j
=((1+2&( j&1)) a~ j, 0+(2&1+2&( j&2)) a~ j, 1+ } } }

+(2&( j&1)�2+1+2&( j&1)�2&1) a~ j, ( j&1)�2&1

+2&( j&1)�2a~ j, ( j&1)�2) (5.10)

In the case j=1 (5.10) gives a~ j, 0=1 which reclaims (1.12), while in the case
j=2 (5.9) gives bj, 0=1 which reclaims (3.15).

The exact form of S(k; ;) in the weak coupling scaling limit ; � 0,
k � 0, k�; fixed is also available. Introducing the dimensionless Fourier
transforms

S� (k; ;) :=\ |
�

&�
(\T

(2)(0, x)+\$(x)) ei\xk dx

8� (k) :=\ |
�

&�
8(x) ei\xk dx

where 8(x) := &log |x| is the pair potential of the log�gas (thus the
integral in the definition of the 8� (k) is to be interpreted as a generalized
function) we have(12)

S� (k; ;)t1&
;8� (k)

1+;8� (k)
(5.11)
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Since

8� (k)=
?
|k|

(5.12)

and noting S� (k; ;)=S(k\; ;)�\ we thus have that in the weak coupling
scaling limit

S(k, ;)=\ \1&
1

1+|k|�?;\+ (5.13)

Expanding (5.13) in the form (1.8) and recalling (5.7) and (1.11) we deduce

a~ j, 0=1 and bj, 0=1 (5.14)

for all j. Using (5.14) in (5.9) and (5.10) gives that in the case j=3,
a~ j, 1=&11

6 , and in the case j=4, b j, 1=&3
2 . The latter result reclaims (4.18)

while the former result together with (5.14) gives

p3(x)=(x&1)(1& 11
6 x+x2) (5.15)

An alternative way to derive (5.14) is to consider the ; � � low tem-
perature limit. In this limit the system behaves like an harmonic crystal, for
which we have available the analytic formula(4) 4

\(har)
(2) (x; 0)=\2 :

�

p=&�; p{0
\ ;

4?f ( p)+
1�2

e&;( p&\x)2�4f ( p) (5.16)

where

f ( p)=
1
?2 |

1�2

0

1&cos 2?pt
t&t2 dt

Taking the Fourier transform gives for |k|<2?\

S (har)(k; ;) = \ :
�

p=&�

(e&k2f ( p)�;\2
&1) eikp�\

t
; � �

&\
k2

;\2 :
�

p=&�

f ( p) eikp�\=
|k|�?;

1&|k|�2?\
(5.17)
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This formula maps to the weak coupling result (5.11) under the action of
the functional equation (1.7) and so implies (5.14).

6. PERTURBATION ABOUT ;=0

The formula (5.13) is just the first term in a systematic weak coupling
renormalized Mayer series expansion in ;. In the case of the two-dimen-
sional one-component plasma, low order terms of this expansion have
recently been analyzed by Kalinay et al.(16) Results from that study can
readily be transcribed to the case of the one-component log�gas.

Formally, the renormalized Mayer series expansion is for the dimen-
sionless free energy ;F� ex (in ref. 16 our ;F� ex is written &;F� ex), and one
computes the direct correlation function via the functional differentiation
formula

c(0, x)=&
$2(;F� ex)

$\(1)(0) $\ (1)(x)
(6.1)

The Ornstein�Zernicke relation gives that the dimensionless Fourier trans-
form of the direct correlation function, c~ (k, ;) say, is related to the dimen-
sionless structure function S� (k; ;) by

c~ (k; ;)=1&
1

S� (k; ;)
(6.2)

so expanding c~ (k, ;) about ;=0 with k�; fixed is equivalent to expanding
S� (k; ;) about ;=0 with k�; fixed.

Now, transcribing the results of ref. 16 we read off that the weak
coupling diagrammatic expansion of c(x1 , x2) starts as

c(x1 , x2)=&;8(x1 , x2)+
1
2!

(K(x1 , x2))2+ } } } (6.3)

where

K(x1 , x2)=&;? |
�

&�

dk
2?

eik(x1&x2)

|k|+}
(6.4)

with }=;?\. This implies

c~ (k; ;)=&
;?
|k|

+
1
2

\ |
�

&�

dl
2?

;?
|l |+}

;?
|\k&l |+}

(6.5)
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The integral is straightforward (consider separately the ranges of l such
that l>0 (l<0) and \k&l>0 (\k&l<0)). In terms of k$ :=\k�}=k�?;,

c~ (k; ;)=&
1

|k$|
+;

1+|k$|
|k$|(2+|k$| )

log(1+|k$| )+O(;2) (6.6)

or equivalently using (6.2)

S(k; ;)=\
|k�}|

1+|k�}|
+;\

|k�}|
(1+|k�}| )(2+|k�}| )

log(1+|k�}| )+O(;2)

(6.7)

Notice that the leading order term in (6.7) reproduces (5.11).
The exact result (6.7) gives the explicit value of the coefficient of x in

the polynomial pj (x). Thus recalling (1.11) and (5.7) we have

1
2

(bj, 1&2)=[x j]
1

(1+x)(2+x)
log(1+x), ( j even)

(6.8)
1
2

(1&a~ j, 1)=[x j]
1

(1+x)(2+x)
log(1+x), ( j odd)

Furthermore, a simple calculation gives

[x j]
1

(1+x)(2+x)
log(1+x)=(&1) j :

j

q=1

1
q

(1&2q& j ) (6.9)

so we have for example

a~ 5, 1=&91
30 , b6, 1=&31

15 , a~ 7, 1=&1607
420

(6.10)
b8, 1=&263

84 , a~ 9, 1=&791
180

Substituting a~ 5, 1 from (6.10) and a~ 5, 0 from (5.14) in (5.9) shows
a~ 5, 2= 62

15 . Similarly, the value of b6, 1 above allows us to deduce that
b6, 2= 13

4 . Thus we have

p5(x)=(x&1)(x4& 91
30x3+ 62

15x2& 91
30x+1)

(6.11)
p6(x)=(x&1)2 (x4& 37

15x3+ 13
4 x2& 37

15x+1)

We remark that according to the conjecture (1.8), the expansion of
S(k, ;) about ;=0 should have the structure

S(k, ;)= f0(k�})+;f1(k�})+;2( f2(k�})+ } } } (6.12)
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where

fj (u)=u j (cj, 0+cj, 1u+ } } } ) (6.13)

Consideration of the analysis of ref. 16 reveals that the structure (6.12) will
indeed result from the weak coupling expansion, however the structure
(6.13) is not immediately evident. (Of course the explicit form f2 as revealed
by (6.7) exhibits this structure.)

7. PERTURBATION ABOUT ;=2 AND ;=4

A feature of the couplings ;=1, 2 and 4 is that the n-particle distribution
functions are known for each n=2, 3,... .(20) Introducing the dimensionless
distribution

g(x1 ,..., xn) :=\(n)(x1 ,..., xn)�\n

we can use our knowledge of g(x1 , , xn) for n=2, 3 and 4 at these specific
; to expand g(x1 , x2) about ;=;0 to first order in ;&;0 . Thus with
8(x1 , x2) :=&log |x1&x2 | we have(13)

g(x1 , x2 ; ;)=g(x1 , x2)+(;&;0) {& g(x1 , x2) 8(x1 , x2)

&2\ |
�

&�
(g(x1 , x2 , x3)& g(x1 , x2)) 8(x1 , x3) dx3

& 1
2\2 |

�

&�
(g(x1 , x2 , x3 , x4)& g(x1 , x2) g(x3 , x4)

& g(x1 , x2 , x3)& g(x1 , x2 , x4)+2g(x1 , x2))

_8(x3 , x4) dx3 dx4=+O((;&;0)2) (7.1)

where on the right hand side the dimensionless distributions are evaluated
at ;=;0 . Here we will compute this first order correction, and the corre-
sponding first order correction for S(k; ;), in the cases ;0=2 and ;0=4 (we
do not consider ;0=1 because of its relation to ;0=4 via the functional
equation (1.7)).

Now, in the case ;0=2 we have

g(x1 ,..., xn)=det[P2(x j , xk)]j, k=1,..., n , P2(x, y) :=
sin ?\(x& y)

?\(x& y)
(7.2)
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while in the case ;0=4

g(x1 ,..., xn)=qdet[P4(x j , xk)] j, k=1,..., n (7.3)

where

P4(x j , xk)=_
sin 2?\xjk

2?\xjk

1
2?\

d
dx jk \

sin 2?\xjk

2?\xjk +

Si(2?\xjk)

sin 2?\xjk

2?\xjk
& (7.4)

with xjk :=x j&xk and Si(x) denoting the complimentary sine integral,
defined in terms of the sine integral si(x) by

Si(x)=|
x

0

sin t
t

dt=
?
2

+si(x), si(x) :=&|
�

x

sin t
t

dt (7.5)

In (7.3) qdet denotes quaternion determinant, which can be defined as

qdet[P4(x j , xk)] j, k=1,..., n

= :
P # Sn

(&1)n&l `
l

1

(P4(xa , xb) P4(xb , xc) } } } P4(xd , xa)) (0) (7.6)

where the superscript (0) denotes the operation 1
2 Tr, P is any permutation

of the indicies (1,..., n) consisting of l exclusive cycles of the form
(a � b � c } } } � d � a) and (&1)n&l is equal to the parity of P. Note that
this reproduces the definition of an ordinary determinant in the case that
P4 is a multiple of the identity.

The task now is to substitute (7.2) in the case ;0=2 and (7.3) in the
case ;0=4, and to compute the integrals. Consider first the case ;0=2.
After some calculation (see Appendix A) we find

g(0, x; ;)=1&\sin ?\x
?\x +

2

+(;&2) {1
2 \

sin ?\x
?\x +

2

&
sin 2?\x

2?\x
+ci(2?\x)

+
1

2(?\x)2 ((log 2?\ |x|+C) cos 2?\x&ci(2?\x))=
+O((;&2)2) (7.7)
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where C denotes Euler's constant while

ci(x)=C+log |x|+|
x

0

cos t&1
t

dt=&|
�

x

cos t
t

dt (7.8)

denotes the cosine integral. From this we can compute (again see Appendix A)
that up to terms O((;&2)2)

S(k; ;)=

|k|
2?

+(;&2) \ {1
2

log \1&
k2

(2?\)2+

(7.9)

+
|k|

4?\
log

2?\+|k|
2?\&|k|

&
|k|
4?\= , |k|<2?\

\+(;&2) \ {1
2

log
|k|+2?\
|k|&2?\

+
|k|

4?\
log \1&

(2?\)2

k2 +&
?\
|k|= , |k|>2?\

Let us consider the consequence of (7.9) in regards to the expansion
(1.8). For |k|<2?\ we observe that all terms but the one proportional to
|k| are even in k. This is consistent with pj (x) having the quadratic factor
(x&1)2 for j odd (recall (5.7)), but only a linear factor for j even (recall
(1.11)). Moreover, we can use (7.9) to derive a linear equation for the coef-
ficients [a~ j ]. First we differentiate (7.9) with respect to ;, set ;=2 and
expand about k=0 to obtain

�S(k; ;)
�; };=2

=&
1
2

|k|
2?\

+ :
�

j=1

1
2j(2j&1) \

|k|
2?\+

2j

, |k|<2?\

Recalling (1.8) and (5.7) this in turn implies

1
2j(2j&1)

=
1
2

(2a~ 2j&1, 0+2a~ 2j&1, 1+ } } } +2a~ 2j&1, j&2+a~ 2j&1, j&1) (7.10)

In the case j=4 we deduce from this equation, (5.14), (6.10) and (5.10)
that

p7(x)=(x&1)(1& 1607
420 x+ 2011

280 x2& 911
105x3+ 2011

280 x4& 1607
420 x5+x6) (7.11)

Consider now the case ;0=4. Due to P4 in (7.3) being a 2_2 matrix,
the calculation required to compute (7.1) is more lengthy and tedius than
in the case ;0=2, although the common structure of n-point distributions
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means the two cases are analogous. Some details are given in Appendix B.
Our final expression for g(x1 , x2 ; ;) is given by (B.4). We find its Fourier
transform can be computed explicitly in terms of elementary functions,
together with the dilogarithm

dilog(x) :=|
x

1

log t
1&t

dt (7.12)

Explicitly, with \=1 for notational convenience, up to terms O((;&4)2)

S(k, ;)=S(k, 4)+(;&4) \&
?

|k|
+B� 0(k)+2B� 1(k)

&4B� 3(k)+2B� 5(k)+B� 6(k)&B� 7(k)+ (7.13)

where

B� 0(k)=&
3
2

+
3 |k|
8?

+
|k|
4?

log \4?+|k|
|k| +

+\C+
1
2

log(16?2&k2)+ \1&
|k|
4?

+
|k|
8?

log } 1&
|k|
2? }+

+
|k|
16? \dilog \ |k|

2?+|k|+&dilog \4?+|k|
2?+|k|+

&log } 1&
|k|
2? } log \4?+|k|

|k| ++ g1(k)+
+

2?&|k|
8?

log }1&
|k|
2? } , |k|<4? (7.14)

B� 0(k)=
1
2

log \ |k|+4?
|k|&4?++

|k|
8?

log \k2&16?2

k2 ++
|k|
16? \dilog \ |k|

|k|+2?+
+dilog \ |k|

|k|&2?+&dilog \ |k|+4?
|k|+2?+

&dilog \ |k|&4?
|k|&2?++ , |k|>4? (7.15)

B� 1(k)={
?

|k| \1&
|k|
4?

+
|k|
8?

log } 1&
|k|
2? }+ ,

0,

|k|<4?

|k|>4?
(7.16)
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B� 3(k)=&
3
2

+
3 |k|
8?

+C \1&
|k|
4?

+
|k|
8?

log } 1&
|k|
2? }+

+\1
8

&
3 |k|
32? + log } 1&

|k|
2? }

+
|k|
64? \log } 1&

|k|
2? }+

2

+
1

8?
(4?&|k| ) log(4?&|k| )

&
1

8?
|k| log |k|+

1
2

log 4?

+
|k|
32? \dilog \ |k|

2?+|k|++
?2

12
&dilog \ 4?

2?+|k|+
&dilog \ |k|

2?+&dilog \4?&|k|
2? ++2 log(2?) log } 1&

|k|
2? }

+log(2?+|k| ) log } 1&
|k|
2? }+ g2(k)+ , |k|<4?

B� 3(k)=0, |k|>4? (7.17)

B� 5(k)={B� 3(k)&
|k|

128? \log }1&
|k|
2? }+

2

+
|k|
32?

g3(k),

0,

|k|<4?

|k|>4?
(7.18)

B� 6(k)=&
3
2

+
3 |k|
8?

&
|k|
16?

log } 1&
|k|
2? }

+(C+log(4?&|k| )) \1&
|k|
4?

+
|k|
8?

log } 1&
|k|
2? }+

+
|k|
32? \

?2

3
&dilog \ |k|

2?+&log } 1&
|k|
2? } log \ |k|

2?+
&2 dilog \4?&|k|

2? +
&2 log } 1&

|k|
2? } log \4?&|k|

2? ++ g4(k)+ , |k|<4?

761Analytic Properties of the Structure Function



B� 6(k)=0, |k|>4? (7.19)

B� 7(k)={
?

|k| \1&
|k|
4?

+
|k|
8?

log } 1&
|k|
2? }+

2

,

0,

|k|<4?

|k|>4?
(7.20)

with

g1(k)=

dilog \4?&|k|
2?&|k|+&dilog \ 2?

2?&|k|+
&

?2

6
&log \1&

|k|
2?+ log \4?&|k|

2?&|k|+ , |k|<2?

dilog \ |k|
|k|&2?+&dilog \ 2?

|k|&2?+
&

?2

6
+log \ 2?

|k|&2?+ log \ |k|
|k|&2?+ , 2?<|k|<4?

g2(k)=

dilog \4?&|k|
2?&|k|+&

?2

6

+log(2?&|k| ) log \1&
|k|
2?+ , |k|<2?

&dilog \ 2?
|k|&2?+

+log(4?&|k| ) log \ |k|
2?

&1+ , 2?<|k|<4?

g3(k)=

1
2 \

?2

6
&2 dilog \2?

|k|+
&log \2?

|k|+ log \(2?&|k| )2

2? |k| ++ , |k|<2?

1
2 \dilog \ |k|&2?

2? +&dilog \2?
|k|+

+log \ |k|&2?
2? + log \ |k|

2?++ , 2?<|k|<4?
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g4(k)=

&
?2

6
&dilog \ 2?

2?&|k|++2 dilog \4?&|k|
2?&|k|+

+2 log \ 2?
2?&|k|+ log \4?&|k|

2?&|k|+ , |k|<2?

dilog \ |k|
|k|&2?+&2 dilog \ 2?

|k|&2?+
+log \ 2?

|k|&2?+ log \ |k|
|k|&2?+ , 2?<|k|<4?

(7.21)

The above formula for S(k; ;) in the case |k|<2? (recall here \=1)
can be used to expand �S(k; ;)��; about k=0. For this task we use com-
puter algebra, which gives the result

�S(k; ;)
�; };=4

=&
|k|
16?

+
|k| 3

256?3+
5k4

3072?4+
3 |k| 5

4096?5+
27k6

81920?6

+
37 |k| 7

245760?7+
1273k8

18350080?8+
887 |k| 9

27525120?9+
4423k10

293601280?10

+
1949 |k| 11

275251200?11+ } } } (7.22)

This allows us to deduce a further equation for [b8, j ]j=0,..., 4 and
[a~ 9, j ]j=0,..., 4 , which in combination with (7.10), (6.10), (5.14), (5.9) and
(5.10) implies

p8(x)=(x&1)2 (1& 263
84 x+ 1697

315 x2& 6337
1008x3+ 1697

315 x4& 263
84 x5+x6) (7.23)

p9(x)=(x&1)(1& 791
180 x+ 73603

7560 x2& 7355
504 x3+ 2231

135 x4

& 7355
504 x5+ 73603

7560 x6& 791
180x7+x8) (7.24)

8. CONCLUSION

Collecting together the evaluations (1.12), (3.15), (5.15), (4.19), (6.11),
(7.11), (7.23) and (7.24), and substituting in (1.8) we have that for
|k|<min(2?\, ?;\)
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?;
|k|

S(k; ;)=1

+(x&1) y

+(x&1)2 y2

+(x&1)(x2& 11
6 x+1) y3

+(x&1)2 (x2& 3
2x+1) y4

+(x&1)(x4& 91
30x3+ 62

15x2& 91
30 x+1) y5

+(x&1)2 (x4& 37
15 x3+ 13

4 x2& 37
15x+1) y6

+(x&1)(x6& 1607
420 x5+ 2011

280 x4& 911
105x3+ 2011

280 x2& 1607
420 x+1) y7

+(x&1)2 (x6& 263
84 x5+ 1697

315 x4& 6337
1008x3+ 1697

315 x2& 263
84 x+1) y8

+(x&1)(x8& 791
180x7+ 73603

7560 x6& 7355
504 x5+ 2231

135 x4

& 7355
504 x3+ 73603

7560 x2& 791
180x+1) y9

+O( y10) (8.1)

where x=;�2 and y=|k|�?;\. With the coefficient of y j denoted pj (x) as
has been throughout, we recall from our workings above that p0(x), p1(x),
p2(x) and p4(x) have been calculated for general values of ;. In all other
cases the calculation has relied on the assumption that the pj (x) are indeed
polynomials. On this point we remark that in such cases, excluding j=8
and 9, we have more data points than is necessary to uniquely specify
pj (x), assuming it is a polynomial, and our extra data points are consistent
with the explicit forms presented in (8.1).

We remark that the structure exhibited by (8.1) is familiar from the
study of exactly solvable two-dimensional lattice models.(10) In this field
one encounters two-variable generating functions G(x, y) say with series
expansions of the form

G(x, y)= :
�

n=0

Hn(x) yn (8.2)

in which Hn(x) is a rational function, and furthermore the denominator
polynomial in Hn(x) only has a small number of (typically no more than
two) distinct zeros. For example, the two-dimensional Ising model with
couplings J1 (J2) between bonds in the horizontal (vertical) direction and
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x :=exp(&4J1 �kBT ), y :=exp(&4J2 �kBT ) has for its spontaneous mag-
netization the celebrated exact expression (see e.g., ref. 2)

M(x, y)=\1&
16xy

(1&x)2 (1& y)2+
1�8

(8.3)

When written in the form (8.2) one finds

Hn(x)=
2xPn(x)
(1&x)n (8.4)

where Pn(x) is a polynomial of degree 2n&2 which satisfies the functional
relation

Pn(x)=x2n&2Pn(1�x) (8.5)

As emphasized in ref. 10, the exact solution (8.3) can be uniquely deter-
mined by the functional form (8.4), together with the functional (inversion)
relation (8.5) and the symmetry relation M(x, y)=M( y, x). For the struc-
ture function of the log�gas we have no analogue of the symmetry relation
and so cannot characterize (2.6) this way.

One immediate feature of the polynomials pj (x) in (8.1) is that for j
even the polynomial pj (&x) has all coefficients positive, while for j odd the
polynomial pj (&x) has all coefficients negative. Another general feature of
the pj (x) in (8.1), obtained from numerical computation, is that all the
zeros lie on the unit circle in the complex x-plane. This can be rigorously
determined numerically because the symmetry (1.9) implies that if x0 is a
zero of pj (x), then so is 1�x0 , which will be the complex conjugate of x0 if
and only if |x0 |=1.

The quantum many body interpretation of (1.1) allows us to give a
physical interpretation to the functional relation (1.7). As the functional
relation is derived from the integral representation (2.9), it is appropriate
to recall(11) the physical interpretation of that formula. In (2.9), with
;�2= p�q, there are q integrals over xi # (0, �) and p integrals over
yj # (0, 1). The variables xi can be interpreted as being rapidities of quasi-
particle excitations, while the yj are rapidities of quasi-hole excitations.
Thus the transformation ; [ 4�; is equivalent to interchanging p and q
and thus the quasi-holes and quasi-particles. In (2.9) this does not lead to
an integral of the same functional form as before; although the functional
form of the integrand is conserved, apart from a renormalization of k, the
domain of integration is different for [xi ] and [ yj ]. But with k restricted
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as in (2.8) both sets of variables can take any value in (0, �). The quasi-
particles and quasi-holes play an identical role and the functional equation
results.

It is of interest to consider the small k expansion of S(k; 1 ), 1 :=
q2�kBT (q= charge), for the two-dimensional one-component plasma. As
mentioned earlier, this has recently been the object of study of Kalinay et
al.(16) They obtain results which imply

2?1
k2 S(k; 1 )=1+\1

4
&1+ k2

2?1\
+\1

4
&

3
2+ \

1
4

&
2
3+ \

k2

2?1\+
2

+O(k6)

(8.6)

where k :=|k9 |. The structure of (8.6) bears a striking resemblence to (8.1)
with 1�4 corresponding to x and k2�2?1\ to y. In particular with
g(x, y) :=(2?1�k2) S(k; 1 ), the expansion (8.6) to the given order is such
that

g(x, y)= g \1
x

; &yx+ (8.7)

Furthermore, writing

g(x, y)=1+ :
�

l=1

ul (x) yl (8.8)

we have u1(x)=(x&1), u2(x)=(x&3�2)(x&2�3) so ul (x) is a monic l th
degree polynomial for l�2. However we can demonstrate that this analogy
breaks down for the l=3 term in (8.8).

To demonstrate this fact, suppose instead that the functional equation
(8.8) was valid at order l=3 in (8.8) and u3(x) is a monic polynomial.
Then u3 must be of the form

u3(x)=(x&1)(x2+ax+1) (8.9)

From the definition of g(x, y) we can check that this is equivalent to the
statement that

1
\ \

?1\
2 +

4

|
R2

r8S(r; 1 ) dr� =(4!)2 (x&1)(x2+ax+1) (8.10)
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But as noted in ref. 16, it follows from the perturbation expansion of ref. 13
that

1
\ \

?1\
2 +

4

|
R2

r8S(r; 1 ) dr� =&4!+(1&2) 4! \ :
4

k=0

2k&1
k+1

&2++O((1&2)2)

=&4!+(1&2) 4!
17
4

+O((1&2)2) (8.11)

The term in (8.11) proportional to 1&2 is incompatible with (8.10) which
gives instead

(1&2) 4!18
4

independent of the value of a. Indeed in ref. 16 evidence is presented which
indicates u3(x) is an infinite series in x, although we have no way of deter-
mining if the functional equation (8.7) also breaks down at this order.

APPENDIX A

In this appendix some details of the derivation of (7.7) and (7.9) will
be given. To simplify notation we take \=1 throughout. The first step is
to substitute (7.2) and (7.1) and simplify by expanding out the determinant
and cancelling terms where possible. This shows that up to terms
O((;&2)2)

g2(x1 , x2 ; ;)

=1&(P2(x1 , x2))2+(;&2) {&(1&(P2(x1 , x2))2) 8(x1 , x2)

&2 |
�

&�
(&(P2(x2 , x3))2&(P2(x1 , x3))2

+2P2(x1 , x2) P2(x2 , x3) P2(x3 , x1)) 8(x1 , x3) dx3

& 1
2 |

�

&�
(4P2(x1 , x3) P2(x3 , x4) P2(x4 , x1)

&4P2(x1 , x2) P2(x2 , x3) P2(x3 , x4) P2(x4 , x1)

&2P2(x1 , x3) P2(x3 , x2) P2(x2 , x4) P2(x4 , x1)

+2(P2(x1 , x3))2 (P2(x2 , x4))2)) 8(x3 , x4) dx3 dx4= (A.1)
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The convolution structure

|
�

&�
f ( y1&x) g(x& y2) dx

often occurs in the above integrals. Such an integral can be transformed by
introducing the Fourier transforms f� ( ĝ) according to the formula

|
�

&�
f ( y1&x) g(x& y2) dx=

1
2? |

�

&�
f� (l ) ĝ(l ) e&il( y1& y2) dl (A.2)

Making use of this formula typically leads to simplifications.
For example, consider the first integral in (A.1). Starting with the

Fourier transform

|
�

&�

sin2 ?x
(?x)2 eikx dx={1&

|k|
2?

,

0,

|k|<2?

|k|>2?
(A.3)

and (5.12), application of (A.2) gives

A1(x12) :=|
�

&�
(P2(x2 , x3))2 8(x3 , x1) dx3=|

2?

&2? \1&
|k|
2?+

?
|k|

cos kx12

dk
2?

(A.4)

This expression is indeed simpler than the original, but it suffers from being
ill-defined, due to the singularity at the origin. However its derivative is
well-defined, and can furthermore be evaluated in terms of elementary func-
tions giving

d
dx

A1(x)=
sin 2?x

2?x2 &
1
x

(A.5)

Also, we have(9)

A1(0)=&|
�

&�
dx

sin2 ?x
(?x)2 log |x|=C+log 2?&1 (A.6)

where C denotes Euler's constant. Together (A.5) and (A.6) imply

A1(x)=&
sin 2?x

2?x
+ci(2?x)&log |x| (A.7)

where ci(x) denotes the cosine integral (7.8).
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The other six integrals in (A.1) yield to similar techniques. We find

A2 :=|
�

&�
(P2(x1 , x3))2 8(x1 , x3) dx3=A1(0)

A3(x12) :=|
�

&�
P2(x2 , x3) P2(x3 , x1) 8(x3 , x1) dx3

= |
?

&?
(C+log(?+k)) cos kx12

dk
2?

=
1
2

(C+log 2?&log |x12 |+ci(2?x12))
sin ?x12

?x12

&
1
2 \si(2?x12)+

?
2+

cos ?x12

?x12

A4 :=|
�

&�
P2(x1 , x3) P2(x3 , x4) P2(x4 , x1) 8(x3 , x4) dx3 dx4

=A3(0)=A1(0)

A5(x12) :=|
�

&�
P2(x2 , x3) P2(x3 , x4) P2(x4 , x1) 8(x3 , x4) dx3 dx4=A3(x12)

A6(x12) :=|
�

&�
P2(x1 , x3) P2(x3 , x2) P2(x2 , x4) P2(x4 , x1) 8(x3 , x4) dx3 dx4

=
1

2(?x12)2 \C+log 2?+cos 2?x12(log |x12 |&ci(2?x12))

&sin 2?x12 \si(2?x12)+
?
2++

A7(x12) :=|
�

&�
(P2(x1 , x3))2 (P2(x2 , x4))4 8(x3 , x4) dx3 dx4

=|
2?

&2?

dk
2? \1&

|k|
2?+

2 ?
|k|

cos kx12

= &log |x12 |&
1&cos 2?x12

(2?x12)2 &
sin 2?x12

2?x12

+ci(2?x12) (A.8)

where si(x) denotes the sine integral defined in (7.5).
Of the results (A.8), the evaluation of A6 is the most difficult, so it is

appropriate to give details in that case also. We observe that A6 consists
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of the convolution of P2(x1 , x3) P2(x3 , x2) regarded as a function of x3 ,
and 8(x3 , x4), and P2(x4 , x1) P2(x2 , x4) regarded as a function of x4 .
It simplifies the calculation to take as the origin in both integrations the
centre of the interval between particle 1 and particle 2, which is achieved
by the change of variables x3 [ x3+(x1+x2)�2, x4 [ x4+(x1+x2)�2.
Use of (A.2) then shows

A6(x12)=|
�

&�

dk
2?

(V� (k, x12))2 ?
|k|

(A.9)

V� (k, x12) :=|
�

&�

sin ?x13

?x13

sin ?x32

?x32

cos kx3 dx3

={
1

?x12

sin \?&
|k|
2 + x12 ,

0,

|k|<2?

|k|>2?
(A.10)

where the second equality in (A.10) follows after further use of (A.2). Thus

A6(x)=|
2?

&2?

dk
2? \

sin(?&|k|�2) x
?x +

2 ?
|k|

(A.11)

As in (A.11), this integrand is ill-defined. To proceed further, we write

A6(x)=A (1)
6 (x)+A (2)

6 (x)

where

A(1)
6 (x)=|

�

&�

dk
2? {\

sin(?&|k|�2) x
?x +

2

&\sin ?x
?x +

2

= ?
|k|

A(2)
6 (x)=\sin ?x

?x +
2

|
2?

&2?

dk
2?

?
|k|

The integral defining A (1)
6 is well defined and can be computed by elemen-

tary means. The integral defining A (2)
6 is singular. It coincides with the

singular part of A1(0) (recall (A.4)), and so from (A.6) we have

A(1)
6 (0)=\sin ?x

?x +
2

(C+log 2?)

Collecting together the above evaluations of A1�A7 and substituting as
appropriate in (A.1) gives (7.7).

770 Forrester, Jancovici, and McAnally



The next task is to evaluate the Fourier transform. Now the evaluations
of A1 and A7 are given as Fourier integrals, so their Fourier transform is
immediate:

FT A1(x)=
?

|k|
&

1
2

, |k|<2?

(A.12)

FT A7(x)=
?

|k|
&1+

|k|
4?

, |k|<2?

while for |k|>2?

FT A1(x)=FT A7(x)=0 (A.13)

We can check that the constants A2 and A4 cancel when substituted in
(A.1), and so play no further part in the calculation.

Of the remaining terms, consider first the first term proportional to
;&2 in (A.1), A0(x) say. Making use of (A.2) we see that

FT A0(x)=&
?

|k|
+|

2?

&2?

dl
|l&k| \1&

|l |
2?+ (A.14)

For |k|<2? minor manipulation allows the singular part

|
2?

&2?

dl
2?

?
|l |

=C+log 2? (A.15)

to be separated, while the remaining convergent integrals are elementary.
We thus find that for |k|<2?

FT A0(x)=&
?

|k|
+{C+log 2?+

1
2

log \1&\ k
2?+

2

+= \1&
|k|
2?+&1

+
|k|
2?

+
|k|
2?

log \2?+|k|
|k| + (A.16)

For |k|>2? the integrals in (A.14) are convergent and also elementary. In
this case we find

FT A0(x)=&
?

|k|
+

1
2

log
|k|+2?
|k|&2?

+
|k|
4?

log \1&
4?2

k2 + (A.17)
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To compute the Fourier transform of A6 , we begin by making use of
(A.2) in (A.9) thereby obtaining

FT A6=|
�

&�

dl
2? |

�

&�

dk1

2?
V� (l, k1) V� (l, &(k1&k))

?
|l |

where

V� (l, k) :=|
�

&�
dx V� (l, x) e?ikx=/ |k| <?&|l |�2

with the equality in the latter formula following from the explicit form
(A.10) of V� (l, x) and then computation of the resulting integral, and where
/T=1 for T true and /T=0 otherwise. Thus

FT A6(x)=|
�

&�

dl
2? |

�

&�

dk1

2?
/ |k1 |<?&|l |�2 / |k1&k|<?&|l |�2

?
|l |

={
\1&

|k|
2?+ (C+log 2?)&\1&

|k|
2?+ log

2?
2?&|k|

(A.18)
&

1
2?

(2?&|k| ), |k|<2?

0, |k|>2?

where use has been made of the generalized integral evaluation (A.15).
The final Fourier transform to consider is

FT
sin ?x

?x
A3(x)

=FT
sin ?x

?x |
?

&?

dk1

2? \C+
1
2

log(?+k1)+
1
2

log(?&k1)+ eik1x

=
1

2? |
�

&�
dl /l # [&?, ?] /l # [&?+k, ?+k]

_\C+
1
2

log(?+l&k)+
1
2

log(?&(l&k))+
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where to obtain the equality use has been made of (A.2). Evaluating the
integral gives

FT
sin ?x

?x
A3(x)=(C+log 2?) \1&

|k|
2?+&

|k|
4?

log
|k|
2?

+
1
2 \1&

|k|
2?+ log \1&

|k|
2?+ (A.19)

for |k|<2?, while for |k|>2?

FT
sin ?x

?x
A3(x)=0 (A.20)

Substituting the above results as appropriate in the Fourier transform
of (A.1) gives the result (7.9).

APPENDIX B

In this appendix we outline some details of the calculation of (7.1) in
the case ;0=4 and show how this leads to (7.13). Because (7.2) and (7.3)
formally have the same structure upon expansion (recall the definition of
qdet (7.6)), the formula (A.1) formally maintains its structure when
generalized to the case ;0=4. Thus we have

g2(x1 , x2 ; ;)

=1&(P4(x1 , x2) P4(x2 , x1))(0)

+(;&4) {&(1&(P4(x1 , x2) P4(x2 , x1)) (0)) 8(x1 , x2)

&2 |
�

&�
(&(P4(x2 , x3) P4(x3 , x2)) (0)&(P4(x1 , x3) P4(x3 , x1))(0)

+2(P4(x1 , x2) P4(x2 , x3) P4(x3 , x1)) (0)) 8(x1 , x3) dx3

& 1
2 |

�

&�
(4(P4(x1 , x3) P4(x3 , x4) P4(x4 , x1)) (0)

&4(P4(x1 , x2) P4(x2 , x3) P4(x4 , x1)) (0)

&2(P4(x1 , x3) P4(x3 , x2) P4(x2 , x4) P4(x4 , x1)) (0)

+2(P4(x1 , x3) P4(x3 , x1))(0) (P4(x2 , x4) P4(x4 , x2)) (0))

_8(x3 , x4) dx3 dx4 =+O((;&4)2) (B.1)
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We treat each of the seven distinct integrals in (B.1) in an analogous way
to their counterparts in (A.1), although extra working is involved due to P4

being a matrix rather than a scalar.
The final results are

B1(x12) :=|
�

&�
(P4(x2 , x3) P4(x3 , x2)) (0) 8(x1 , x3) dx3

=|
4?

&4?

dk
2? \1&

|k|
4?

+
|k|
8?

log } 1&
|k|
2? }+

?
|k|

cos kx12

=&log |x12 |&
sin 4?x12

4?x12

+ci(4?x12)&
cos 2?x12

4?x12

Si(2?x12)

B2 :=|
�

&�
(P4(x1 , x3) P4(x3 , x1)) (0) 8(x1 , x3) dx3=B1(0)

=C+log 4?&
3
2

B3(x12) :=|
�

&�
P4(x2 , x3) P4(x3 , x1) 8(x1 , x3) dx3

=_
1
4

f1(x12)&
1
4

f3(x12)

&
1
4

f $1(x12)+
1
4

f $3(x12)

&
1
4 |

x12

0
( f1(t)+ f2(t)) dt

1
4

f1(x12)+
1
4

f2(x12) &
B4 :=|

�

&�
(P4(x1 , x3) P4(x3 , x4) P4(x4 , x1)) (0) 8(x1 , x3) dx3 dx4

=B1(0)

B5(x12) :=|
�

&�
P4(x2 , x3) P4(x3 , x4) P4(x4 , x1) 8(x3 , x4) dx3 dx4

=_
1
4 f1(x12)+ 1

8 f2(x12)& 1
8 f3(x12)

&( 1
4 f $1(x12)+ 1

8 f $2(x12)& 1
8 f $3(x12))

&�x12
0 ( 1

4 f1(t)+ 1
8 f2(t)& 1

8 f3(t)) dt
1
4 f1(x12)+ 1

8 f2(x12)& 1
8 f3(x12) &

B6(x12) :=|
�

&�
(P4(x1 , x3) P4(x3 , x2) P4(x2 , x4) P4(x4 , x3)) (0)

_8(x3 , x4) dx3 dx4
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=|
4?

&4?

1
2 |k| {(g1(k, x12))2+cos(kx12 �2) g1(k, x12)

_\ |k|
4?

g2(k, x12)&
ik
4?

g3(k, x12)+
+cos(kx12) \ |k|

8?
g2(k, x12)&

ik
8?

g3(k, x12)+
2

&\sin( |k|x12 �2)
4?

g2(k, x12)+
cos(kx12 �2)

4?
g3(k, x12)+

_\(4?&|k| ) cos((2?&|k|�2)) x12)
4?x12

&
sin(2?&|k|�2) x12)

2?x2
12 += dk

B7(x12) :=|
�

&�
(P4(x1 , x3) P4(x3 , x1)) (0)(P4(x2 , x4) P4(x4 , x2)) (0)

_8(x3 , x4) dx3 dx4

=|
4?

&4? \1&
|k|
4?

+
|k|
8?

ln } 1&
|k|
2? }+

2 ?
|k|

cos kx12

dk
2?

=&log |x|&
sin 4?x

4?x
+ci(4?x)&

Si(2?x) sin 2?x
8?2x2

&
Si(2?x) cos 2?x

4?x

+|
4?

&4?
|k| log } 1&

|k|
2? }

2

cos kx
dk

128?2 (B.2)

where

f1(x) :=|
2?

&2?
(2C+ln(4?2&k2)) cos kx

dk
2?

=
sin 2?x

?x
(C+ln 4?&ln |x|+ci(4?x))&

cos 2?x
?x

Si(4?x)

f2(x) := &
1

?x
Si(2?x)

f3(x) :=
sin 2?x

?x
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g1(k, x)=
sin((2?&|k|�2) x)

2?x

g2(k, x)=ci((2?&|k| ) x)&ci(2?x)

g3(k, x)=Si((2?&|k| ) x)+Si(2?x) (B.3)

When substituted in (B.1), the constant terms B2 and B4 cancel, and we
obtain the formula

g(x1 , x2 ; ;)=1&(P4(x1 , x2) P4(x2 , x1))(0)

+(;&4)[(&1+(P4(x1 , x2) P4(x2 , x1))(0) 8(x1 , x2)

+2B1(x12)&4(P4(x12) B3(x12)) (0)+2(P4(x12) B5(x12)) (0)

+B6(x12)&B7(x12)]+O((;&4)2) (B.4)

We will demonstrate the close analogy with the ;=2 calculation of
Appendix A by giving the derivation of the integral formula in (B.2) for
B1(x12). As in the derivation of the integral formula (A.4) for A1(x12), our
strategy is to use the convolution formula (A.2). However here the Fourier
transform of P4(x1 , x2) P4(x2 , x1) is not immediate. What is immediate is
the Fourier transform of P4(x1 , x2). Thus from the definition (7.4) we see
that

FT P4(x1 , x2) :=|
�

&�
P4(x1 , x2) eikx12 dx12

={_
1�2

&ik�2
i�2k
1�2 & ,

_0 0
0 0& ,

|k|<2?

|k|>2?

Use of (A.2) then shows that for |k|<4?

FT P(x1 , x2) P4(x2 , x1)

=|
2?

&2? _
1�2

&il�2
i�2l
1�2& _

1�2
i(k&l )�2

&i�2(k&l )
1�2 & / |k&l |<2?

dl
2?

=_
1&

|k|
4?

+
|k|
8?

log }1&
|k|
2? }

0
0

1&
|k|
4?

+
|k|
8?

log } 1&
|k|
2? }& (B.5)
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while for |k|>4?

FT P4(x1 , x2) P4(x2 , x1)=0 (B.6)

The results (B.5) and (B.6) are the analogue of (A.3) in the working leading
to the evaluation of A1(x12). The integral formula for B1(x12) in (B.2) now
follows from (B.5), (B.6) and (5.12) upon a further application of (A.2).

The Fourier transform of (B.4) can be computed explicitly. The final
result has already been stated in (7.13). This is obtained through the inter-
mediate results

FT Bj (x)=B� j (k) for j=0, 1, 3, 5, 6, 7

with

B0(x12) :=(P4(x1 , x2) P4(x2 , x1)) (0) 8(x1 , x2)

and the B� j specified by (7.14)�(7.20). We will illustrate the working by
giving some details of the computation of B� 0(k) for |k|<4?.

Using (B.5) and (5.12) we see from (A.2) that

FT B0(x12) = |
4?

&4? \1&
|l |
4?

+
|l |
8?

log } 1&
|l |
2? }+

?
|k&l |

dl
2?

=\1&
|k|
4?

+
|k|
8?

log } 1&
|k|
2? }+ |

4?

&4?

?
|k&l |

dl
2?

+|
4?

&4? \
|k|&|l |

4? + ?
|k&l |

dl
2?

+|
4?

&4? \
|l |& |k|

8? + log } 1&
|l |
2? }

?
|k&l |

dl
2?

+
|k|
8? |

4?

&4?
log } 2?&|l |

2?&|k| }
?

|k&l |
dl
2?

(B.7)

where the second equality, which follows from minor manipulation of the
first integral, is motivated by the desire to separate the singular integral.
Thus in the second equality of (B.7) only the first integral is singular.
It is essentially the same as the first singular integral in (A.14), and is
evaluated as

|
4?

&4?

?
|k&l |

dl
2?

=C+
1
2

log(16?2&k2), |k|�4? (B.8)
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The second integral in the second equality of (B.7) also appears in the
evaluation of (A.14). An elementary calculation shows

|
4?

&4?

|k|&|l |
4?

?
|k&l |

dl
2?

=&1+
|k|
4?

+
|k|
4?

log \4?+|k|
|k| + (B.9)

To evaluate the third integral in (B.7) we suppose without loss of
generality that k>0 and write

|
4?

&4?

|l |& |k|
8?

log } 1&
|l |
2? }

?
|k&l |

dl
2?

=|
2?

0 \ 1
16?

+
k

8?(l&k)+ log } 1+
l

2? } dl

&|
k

0
log } 1&

|l |
2? }

dl
16?

+|
4?

k
log } 1&

|l |
2? }

dl
16?

(B.10)

The only non-elementary integral is the second term of the first integral.
This can be computed by checking from the definition (7.12) that for
&4?<l<0

d
dl \dilog \ k&l

k+2?++log } 1+
l

2? } log \ k&l
k+2?++=

1
l&k

log } 1+
l

2? }
(B.11)

In total we therefore have

|
4?

&4?

|l |&|k|
8?

log } 1&
|l |
2? }

?
|k&l |

dl
2?

=&
1
2

+
|k|
8?

+
|k|
8? \dilog \ |k|

2?+|k|+&dilog \4?+|k|
2?+|k|++

+
2?&|k|

8?
log } 1&

|k|
2? } (B.12)

To evaluate the final integral in (B.7), a similar approach to that
leading to the evaluation (B.12) is adopted. Minor complications arise
because of the need to modify the formula (B.11) for l>k. We find
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|
4?

&4?

|k|
8?

log } 2?&|l |
2?&|k| }

?
|k&l |

dl
2?

=
|k|
16? {dilog \4?+|k|

2?+|k|+&dilog \ |k|
2?+|k|+

&log } 1&
|k|
2? } log \4?+|k|

|k| ++ g1(k)= (B.13)

where g1 is defined in (7.21). Substituting (B.8)�(B.13) in (B.7) gives the
result (7.14).
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